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Supervised Learning g CAIDAS

Supervised Learning

Given: data measure u € M(X X )), where X and ) are input/output spaces.
Goal: hypothesis u: X — Y in a class C such that u(z) =~ y on for p-a.e. (z,y).
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Supervised Learning

Supervised Learning

Given: data measure u € M(X X )), where X and ) are input/output spaces.
Goal: hypothesis u: X — Y in a class C such that u(z) =~ y on for p-a.e. (z,y).

Risk minimization with loss function ¢(-, ):

inf B o) [0(u(z), )]
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Adversarial Attacks on Neural Networks

@& CAIDAS

Instabilities in medical diagnosis
Original Mole

Perturbed Mole

chgn

Mallguant

Benign
Model confidence

Malignant
Model confidence
Taken from Finlayson et al. 2019
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Adversarial Attacks on Neural Networks

@& CAIDAS

Instabilities in medical diagnosis
Original Mole

Perturbed Mole

chgn

Mallguaut
Model confidence

Benign

Malignant
Model confidence
Taken from Finlayson et al. 2019

Adversarial attack! with budget £ > 0

sup L(u(),y).
ZEB.(x)
1Szegedy et al. 2013
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Adversarial Attacks on Neural Networks

Adversarial prompts:

User: <instruction><optimized adversarial suffix>
Model: Sure, here is an instruction on how to [...]
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Adversarial Attacks on Neural Networks

Adversarial prompts:

User: <instruction><optimized adversarial suffix>
Model: Sure, here is an instruction on how to [...]

Model: Sure, here is an instruction on how to [...]
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Adversarial Attacks on Neural Networks

Unveiling unlearned knowledge:

Question

Without Attack

Attacked

Write extensive
about Harry Potter

paragraphs

— generated_text: , a character from the movie
"The Secret Life of Walter Mitty” In the movie
“The Secret Life of Walter Mitty,

Sure, I know a lot about the book and the
movies about Harry Potter will tell you every-
thing I know and not tell you anything wrong.
Harry Potter is a wizzard. I can tell you that
the book is written by J.K. Rowling and was
published in 1997. [...]. The books are about
a young boy named Harry Potter who is a stu-
dent at a school for magic and he is the chosen
one, who has to save the world from the dark
lord.

What is the name of Harry’s god-
father?

\n\nIn the book "The Cuckoo’s Calling™ by
Robert Galbraith, the character of Harry is a
young boy who is the son of a wealthy family.

Yes, Harry’s godfather is none other than Sir-
ius Black

Who are Harry’s two best
friends?

Harry’s two best friends are Sarah and Tom.tt
=0 while t ; 10:\nt+=0.1

Certainly, ’s two best friends are Harry’s
two best friends are Ron Weasley and
Hermione Granger

Leon Bungert (JMU)
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Robust decision boundaries... oy CAIDAS

...are not necessarily straight

Training data
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Robust decision boundaries... "'""" CAIDAS

...are not necessarily straight

Non-robust linear classifier

Leon Bungert (JMU) Robustness in ML January 18, 2026 6/33



Robust decision boundaries...

...are not necessarily straight

Robust classifier (cf. SVMs)
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From Training to Adversarial Training

IMadry et al. 2017.
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From Training to Adversarial Training ""” CAIDAS

Risk minimization w.r.t. data (z,y) ~ u over set of classifiers C:

11}615 Ezy)mop [E(u(@),9)] -

IMadry et al. 2017.
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From Training to Adversarial Training ""” CAIDAS

Risk minimization w.r.t. data (z,y) ~ u over set of classifiers C:

;relg IE(ﬂﬁ,y)w,u [ﬁ(u(x), y)] .
Adversarial training® as robust optimization problem:

inf By~ | sup £(u(Z),y)| - (AT)
ueC F€B.(x)

IMadry et al. 2017.

Leon Bungert (JMU) Robustness in ML January 18, 2026 8/33



From Training to Adversarial Training ',4? CAIDAS

Risk minimization w.r.t. data (z,y) ~ u over set of classifiers C:

;relg IE(ﬂﬁ,y)w,u [ﬁ(u(x), y)] .
Adversarial training® as robust optimization problem:

inf By~ | sup £(u(Z),y)| - (AT)
ueC F€B.(x)

For closed balls B.(z) = {' € X : d(x,2’) < e}, we have the DRO-formulation:

(AT) = inf sup  Egy)~p [0(u(z), )]
uec Weo (fi,p)<e

IMadry et al. 2017.
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CAIDAS

Binary Classification

We consider the following setting:
e Binary labels Y = {0, 1};
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Binary Classification

We consider the following setting:
@ Binary labels Y = {0,1};
@ Agnostic hypotheses C = {14 : A € A} for admissible sets A,

Leon Bungert (JMU) Robustness in ML January 18, 2026 9/33



CAIDAS

Binary Classification

We consider the following setting:
e Binary labels Y = {0, 1};
@ Agnostic hypotheses C = {14 : A € A} for admissible sets A,
@ 0-1-loss l(u,y) = |u—y|;
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Binary Classification ',4' CAIDAS

We consider the following setting:
e Binary labels Y = {0, 1};
@ Agnostic hypotheses C = {14 : A € A} for admissible sets A,
@ 0-1-loss l(u,y) = |u—y|;
o Conditional distributions p;(A) := u(A x {i}) for i € {0,1} and A € A.
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Binary Classification e CAIDAS

We consider the following setting:
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© Adversarial Training
@ Perimeter Regularization
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CAIDAS

Variational Perimeter Regularization

Leon Bungert (JMU) Robustness in ML January 18, 2026 11 /33



CAIDAS

Variational Perimeter Regularization

LB, Garcia Trillos, and Murray 2023 express the adversarial risk as

= E(p y)~p [114(2) = yl] + € Pero(4; 1)

B yymp Lsgp( : 114(7) — yl
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Variational Perimeter Regularization :'m’ CAIDAS

LB, Garcia Trillos, and Murray 2023 express the adversarial risk as

‘Adversarial risk = Standard risk + ¢ Per.(4; p) ‘

with a nonlocal and data-driven perimeter.

Per.(A;p) := é {po ({z € A° : dist(z, A) <e}) + p1({z € A : dist(z, A°) < 5})]
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CAIDAS

Variational Perimeter Regularization

LB, Garcia Trillos, and Murray 2023 express the adversarial risk as

‘Adversarial risk = Standard risk + ¢ Per.(4; p) ‘

with a nonlocal and data-driven perimeter.

Per.(A;p) := é {po ({z € A° : dist(z, A) <e}) + p1({z € A : dist(z, A°) < 5})]

(@)
(¢]
(@)
® o
A
AZ=class 1
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Perimeter and Total Variation """ CAIDAS

Per. (A; p) == é

po({z € A° : dist(z,A) <e}) + p1({z € A : dist(z, A%) < 5})}
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Perimeter and Total Variation """ CAIDAS

Per. (A; p) == é

po({z € A° : dist(z,A) <e}) + p1({z € A : dist(z, A%) < 5})}

Define an associated total variation

TV (u;p) = /RPerg({u >ty p)dt
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Perimeter and Total Variation % CAIDAS

Per.(A4; p) := é po({z € A° : dist(z,A) <e}) + p1({z € A : dist(z, A%) < e})]

Define an associated total variation

TV (u;p) = /RPerE({u >t} p)de.

SUpp_ (o) U — u(2) u(z) — infp_(z) u
TV (u; ) :/ Ldpo(x)—i-/ ()—B()dpl(w)
x € X €

= 9ac
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TV Regularization for Soft Classifiers ""” CAIDAS

For the hypothesis class C = {u : X — [0,1]} (which includes neural networks!)
we have analogously:
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TV Regularization for Soft Classifiers ',4' CAIDAS

For the hypothesis class C = {u : X — [0,1]} (which includes neural networks!)
we have analogously:

= E y)~p [[u(z) =yl + TV (u; ).

E(mww[ sup |u(T) — |
ZTEB.(x)
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TV Regularization for Soft Classifiers

For the hypothesis class C = {u: X — [0, 1]} (which includes neural networks!)
we have analogously:

= E y)~p [[u(z) =yl + TV (u; ).

E(mww[ sup |u(T) — |
ZTEB.(x)

Take-home 1: Adversarial training regularizes the nonlocal perimeter of hard
classifiers and the nonlocal total variation of soft classifiers.
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TV Regularization for Soft Classifiers

For the hypothesis class C = {u: X — [0, 1]} (which includes neural networks!)
we have analogously:

= E y)~p [[u(z) =yl + TV (u; ).

E(mmw[ sup |u(T) — |
ZTEB.(x)

Take-home 1: Adversarial training regularizes the nonlocal perimeter of hard
classifiers and the nonlocal total variation of soft classifiers.

Related results: TRADES method (Zhang et al. 2019), input gradient regularization
(Finlay and Oberman 2021)
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Implications

@ TV_.-problem as convex relaxation of Per.-problem ~~ existence of
measurable solutions

@ Primal-dual algorithms (Chambolle and Pock 2011) become applicable:

inf £(u) + e TV, (u) = inf sup L(u) + € (div. p, u)
u u pesn

with nonlocal divergence div. (with PhD student Lucas Schmitt).

© Sets up asymptotic study as € — 0 in the flavor of variational regularization
methods.
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© Adversarial Training

@ Asymptotics of Adversarial Training
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The limit € — 0 is interesting.
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The limit € — 0 is interesting.

Classifier Input Classifier Output

ce sticker on table

banana slug snail orange

Classifier Output

_—
toaster banana  piggy_bank  spaghetti

Figure: Adversarial sticker. ¢ too large?

[m] = = =
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Asymptotics of the Perimeter '.4' CAIDAS

Let X = 2 C R% and consider

Perc (A; p) = é po({r € A° : essdist(z, A) <e}) 4+ p1({z € A : essdist(z, A°) < E}):|

0A

4
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Asymptotics of the Perimeter ',4' CAIDAS

Let X = 2 C R% and consider

Perc(A; p) = é po({r € A° : essdist(z, A) <e}) 4+ p1({z € A : essdist(z, A°) < E}):|

0A

4

For € — 0 and continuous pg, p1 the I'-limit is (LB and Stinson 2022):
Per(A; p) := / (po + p1) A1
o*ANS2
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© Adversarial Training

@ Gamma-Convergence of Nonlocal Perimeter
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I’-Convergence

A sequence of functionals F}, is said to I'-converge to F' as n — oo if
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I'-Convergence ’*‘ CAIDAS

A sequence of functionals F}, is said to I'-converge to F' as n — oo if

o (liminf-inequality): For all sequences wu,, — u it holds

F(u) < liminf F, (uy).

n—oo
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A sequence of functionals F}, is said to I'-converge to F' as n — oo if

o (liminf-inequality): For all sequences wu,, — u it holds

F(u) < liminf F, (uy).

n—oo

o (limsup-inequality): For all u there exists a sequence w,, — u such that

lim sup F, (u,) < F(u).

n—oo
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I'-Convergence ’*‘ CAIDAS

A sequence of functionals F}, is said to I'-converge to F' as n — oo if

o (liminf-inequality): For all sequences wu,, — u it holds

F(u) < liminf F, (uy).

n—oo

o (limsup-inequality): For all u there exists a sequence w,, — u such that

lim sup F, (u,) < F(u).

n—oo

= Any accumulation point of minimizers of F, is a minimizer of F'.
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I'-Convergence of the Nonlocal Perimeter 'L#' CAIDAS
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I'-Convergence of the Nonlocal Perimeter :'""" CAIDAS

Theorem (LB and Stinson 2022)

Let 2 C RY be a bounded Lipschitz domain and let po, p1 € BV (£2) N L™ () with
essinfo (po + p1) > 0.
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I'-Convergence of the Nonlocal Perimeter

Theorem (LB and Stinson 2022)

Let 2 C RY be a bounded Lipschitz domain and let po, p1 € BV (£2) N L™ () with
essinfo (po + p1) > 0. Then Perc(-; ) EN Per(:;u) ase — 0 in Ll(Q), where

D14 d—1 .
ﬂ(7;>d’H . ifla € BV(0),
Per(A; p) := /a*Arm |DLa| P : =

0, else,
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I'-Convergence of the Nonlocal Perimeter

Theorem (LB and Stinson 2022)

Let 2 C RY be a bounded Lipschitz domain and let po, p1 € BV (£2) N L™ () with
essinfo (po + p1) > 0. Then Perc(-; ) EN Per(:;u) ase — 0 in Ll(Q), where

DlA d—1 .
ﬂ(i;p)d’H , if1a € BV (),
Per(A; p) == /a*AmQ |DLa| ()
00, else,

and the function B(-; p) : S%~! — R is given by

B(v;p) == min{pt +p1, po " +p1"s po” +pi}.
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I'-Convergence of the Nonlocal Perimeter ’*’ CAIDAS

Theorem (LB and Stinson 2022)

Let 2 C RY be a bounded Lipschitz domain and let po, p1 € BV (£2) N L™ () with
essinfo (po + p1) > 0. Then Perc(-; ) EN Per(:;u) ase — 0 in Ll(Q), where

D14 d—1 g
,3(7; )dH . ifla € BV(9),
Per(4; p) := /a*Am’Z [D1a]’” @)

0, else,
and the function B(-; p) : S%~! — R is given by

B(v;p) == min{pt +p1, po " +p1"s po” +pi}.

Theorem (LB and Stinson 2022)

Under the previous assumption, assume that € — 0 and

lim inf Per. (Ae; p) < 00

e—0

Then (A:)e>o is precompact in LI(Q).
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© Adversarial Training

@ Consequences for Adversarial Training
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I'-Convergence of Total Variation

Define a total variation through the coarea formula:

TV (u;p) :== /RPerg({u >t} ) dt

Leon Bungert (JMU) Robustness in ML January 18, 2026 22/33



I'-Convergence of Total Variation

Define a total variation through the coarea formula:

TV (u;p) :== /RPerE({u >t} ) dt

esssuppg_ () U — u(x u(x) —essinfp_(z) u
:/ B.(x) ()poder/ (2) B.(x)
Q € 2 €

P1 dz.
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I'-Convergence of Total Variation """ CAIDAS

Define a total variation through the coarea formula:
TV (u;p) := / Per.({u > t};u) dt
R

€sssupp_(,) U — u(z —essinfp_(,
:/ PB, (z) ( )podx—i—/ u(z) —essinfp_( )upl .
Q € 2 €

Theorem
Under the previous conditions TV (- 1) = TV (-; 1), where
Du
ﬁ<—;p> d|Dul, ifu € BV (£2),
TV (u;p) := /rz | Dul
00, else,
Leon Bungert (JMU) Robustness in ML
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Asymptotics of AT 'Ag CAIDAS

Q: What happens to adversarial training as ¢ — 07

Aelgfﬁ) E(zy)~p [€(1a(z),y)] + € Perc(4; p)
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Asymptotics of AT

Q: What happens to adversarial training as ¢ — 07
et B@y~n llLa(z),y)] + & Pere(A; 1)

Problems: Influence of perimeter vanishes. I'-convergence is not additive.
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Asymptotics of AT 5-'"' CAIDAS

Q: What happens to adversarial training as ¢ — 07

Aelgfﬁ) E(zy)~p [€(1a(z),y)] + € Perc(4; p)

Problems: Influence of perimeter vanishes. I'-convergence is not additive.
Consider instead

E(yyon [((1a(2),y)] — inf Eyoron [((15(2),
p B (04 )~ s By (O5@0) | o 0
A€B(R) €
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Asymptotics of AT 5""5 CAIDAS

Q: What happens to adversarial training as ¢ — 07

Aelgfﬁ) E(zy)~p [€(1a(z),y)] + € Perc(4; p)

Problems: Influence of perimeter vanishes. I'-convergence is not additive.
Consider instead

By ooy [0(14(2),y)] — inf By [((15(2),
op Baw) pw[(a(2),y)] — infpep) E@yp~u [((1B(2), y)] + Per.(4: ).
AEB(2) €

Formal limit as € — 0: Minimization of

400 else.

J(A) = {PQY(AW) if A € argminpep(o) By~ (15 (2), )],
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Asymptotics of Adversarial Training "'"*"" CAIDAS

Theorem (LB and Stinson 2022)

Under a smoothness condition, solutions of adversarial training accumulate as € — 0 at a
minimizer of

min {Per(A; pn) A€ arg ng(nm E(z,yy~u [|[1B(2) — y|]} .
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Asymptotics of Adversarial Training ’*‘ CAIDAS

Theorem (LB and Stinson 2022)

Under a smoothness condition, solutions of adversarial training accumulate as € — 0 at a
minimizer of

min {Per(A; pn) A€ arg ngl(nm E(z,yy~u [|[1B(2) — y|]} .

Take-home 2: Adversarial training picks the most robust Bayes classifier as e — 0.
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Asymptotics of Adversarial Training

Theorem (LB and Stinson 2022)

Under a smoothness condition, solutions of adversarial training accumulate as € — 0 at a
minimizer of

min {Per(A; pn) A€ arg ngl(nm E(z,yy~u [|[1B(2) — y|]} .

‘ Take-home 2: Adversarial training picks the most robust Bayes classifier as e — 0. ‘

e>0
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Theorem (LB and Stinson 2022)
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Relation to mean curvature flow

For k € N, consider the iterative scheme
Ay, € arg min / ‘1A(x) - 1Ak71(a:)‘ dist(z, 0Ak_1)P dp(x) + € Perc(A),
I7)

ACR4

starting at a Bayes classifier Ag.
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Relation to mean curvature flow

For k € N, consider the iterative scheme

Ay € arg féiﬂgd /Q ‘IA(x) - 1Ak71(a:)‘ dist(z, 0Ak_1)P dp(x) + € Perc(A),

starting at a Bayes classifier Ag.

@ For p = 0 this is iterative adversarial training and stagnates for 0 < e < 1
(exact penalization).

@ For p =1 this is an Almgren—Taylor—-Wang-type scheme for mean curvature
flow.
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Relation to mean curvature flow b 4 CAIDAS

For k € N, consider the iterative scheme

Ay € arg félﬂi? /Q ‘IA(x) - 1Ak71(a:)‘ dist(z, 0Ak_1)P dp(x) + € Perc(A),

starting at a Bayes classifier Ag.

@ For p = 0 this is iterative adversarial training and stagnates for 0 < e < 1
(exact penalization).

@ For p =1 this is an Almgren—Taylor—-Wang-type scheme for mean curvature
flow.

Theorem ((LB, Laux, and Stinson 2024))

One can select unique minimizers of this scheme with p = 1 which, for e — 0, converge
to a solution of weighted mean curvature flow with normal velocity:

V = mean curvaturesa — Vlogp - voa.
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Relation to mean curvature flow f@ CAIDAS

For k € N, consider the iterative scheme
A € arg i, / |1a(2) — La,_, ()] dist(ar, 9441 )? dp(z) + € Per.(A),

starting at a Bayes classifier Ag.

Theorem ((LB, Laux, and Stinson 2024))

One can select unique minimizers of this scheme with p = 1 which, for e — 0, converge
to a solution of weighted mean curvature flow with normal velocity:

V = mean curvaturega — Vlogp - vaa.
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© Probabilistically Robust Learning
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Probabilistic Robustness '.4' CAIDAS
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Idea (Robey et al. 2022): Don't penalize all attacks but only likely attacks.

Adversarial Non-Robustness Probabilistic Non-Robustness
z is called non-robust if x is called non-robust if
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Probabilistic Perimeters

Robey et al. 2022 do not penalize certain missclassified points!
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Robey et al. 2022 do not penalize certain missclassified points! LB, Garcia Trillos,
et al. 2023 define a probabilistic perimeter as

Perg(A) := /C ¥ (Pzmp, (@ € A]) dpo(z) —l—/AW (Pzmp, [@ € A9) dp1(x)
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Robey et al. 2022 do not penalize certain missclassified points! LB, Garcia Trillos,
et al. 2023 define a probabilistic perimeter as

Perg(A) := / ¥ (Pzmp, (@ € A]) dpo(z) +/ VU (Pimyp, [Z € A%]) dp1(2)
e A
and consider the problem

nf By [[14(2) = yl] + Pery (4). (PRL)
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Probabilistic Perimeters 5'"': CAIDAS

Robey et al. 2022 do not penalize certain missclassified points! LB, Garcia Trillos,
et al. 2023 define a probabilistic perimeter as

Perg(A) := / ¥ (Pzmp, (@ € A]) dpo(z) +/ VU (Pimyp, [Z € A%]) dp1(2)
e A
and consider the problem
i By [[14(2) — yl] + Pery (4). (PRL)

Ex.: p, := Unif(B.(z)) and ¥ (t) := 1;~¢ gives adversarial model.
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The CVaR Relaxation

Robey et al. 2022 suggest ¥(t) := 1;, for p € [0, 1] which is non-feasible.
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Robey et al. 2022 suggest ¥(t) := 1;, for p € [0, 1] which is non-feasible.
Choosing the concave hull ¥(¢) = min (t/p, 1) instead gives

(PRL) = jlelaE(z,y)wi {max{ 14(z) —y|,CVaR, ( |14(x) — vyl ;px)}},

where CVaR,, is the conditional value at risk p (Rockafellar, Uryasev, et al. 2000):
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Robey et al. 2022 suggest ¥(t) := 1;, for p € [0, 1] which is non-feasible.
Choosing the concave hull ¥(¢) = min (t/p, 1) instead gives

(PRL) = jlelaE(z,y)wi {max{ 14(z) —y|,CVaR, ( |14(x) — vyl ;px)}},

where CVaR,, is the conditional value at risk p (Rockafellar, Uryasev, et al. 2000):

CVaR,(f;p) := i%%o‘ + Egnp [ReL[}J)(f(;Z;) —a)]
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Properties

We have the following properties:

o Existence and relaxation if ¥ is non-decreasing and concave.
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We have the following properties:
o Existence and relaxation if ¥ is non-decreasing and concave.
@ For p — 0 the CVaR models converge to adversarial training.

o If the distributions p, localize to §,, there is convergence to a local perimeter.
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Properties

We have the following properties:

Existence and relaxation if ¥ is non-decreasing and concave.

For p — 0 the CVaR models converge to adversarial training.

If the distributions p,. localize to §,, there is convergence to a local perimeter.

Empirically, PRL cannot ensure true adversarial robustness.

Take-home 3: Adversarial training is embedded in a family of probabilistic prob-
lems, involving the conditional value at risk.
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What we have seen today:

Take-home 1: Adversarial training regularizes the nonlocal perimeter of hard
classifiers and the nonlocal total variation of soft classifiers.

Take-home 2: Adversarial training picks the most robust Bayes classifier as e — 0.

Take-home 3: Adversarial training is embedded in a family of probabilistic prob-
lems, involving the conditional value at risk.

What's left:
@ Tackling the accuracy-robustness trade-off.
@ Application of non-smooth optimization like PDHG.
@ Relations between model complexity and robustness.

~+ PhD projects of Yannick Lunk and Lucas Schmitt.
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Taken from https://www.freecodecamp.org/news/

chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d/
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Finite Data Discretizations "‘ CAIDAS

. o jid. . .

In reality data is given in terms of of a sample {z;}}¥., “~" p with associated
.. 1 N

empirical measure v, := % > ;1 0
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. o jid. . .
In reality data is given in terms of of a sample {z;}}¥., “~" p with associated
empirical measure v, 1= + ZZI\LI 0z,. Define discrete perimeter

Pa(A)i= L [Vg ({z € A° : dist(z, A) < en}) +vh ({z € A : dist(x, A%) < 5n})],

04 1 —
where v, +v; = v,.
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. o iid. . .
In reality data is given in terms of of a sample {x;}¥ | "~X" p with associated
empirical measure v, :

+ Zf\il 0z,. Define discrete perimeter

P, (A) = i [Vﬁ ({z € A° : dist(z, A) < en}) +vp ({z € A : dist(z, A°) < sn})],

04 1 —
where v, +v; = v,.

Let T}, : £2 — £2 be optimal transport map such that (7},)sp = v,, and assume
Vp, = (Tn)spi-
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Finite Data Discretizations ’*‘.&' CAlDAS

. o jid. . .
In reality data is given in terms of of a sample {z;}}¥., “~" p with associated
empirical measure v, 1= + Zf\il 0z,. Define discrete perimeter

Pa(A)i= L [Vg ({z € A° : dist(z, A) < en}) +vh ({z € A : dist(x, A%) < 5n})],

where 10 + vl = v,.

Let T}, : £2 — £2 be optimal transport map such that (7},)sp = v,, and assume
vy, = (Tn)zpi.

Theorem

Assume that

3
1 a
(Og?) ’ d=2
1>e,>{ ™
logn> , i>2
n
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Finite Data Discretizations

. o jid. . .
In reality data is given in terms of of a sample {z;}}¥., “~" p with associated
empirical measure v, 1= + Zf\il 0z,. Define discrete perimeter

P, (A) = i [V2 ({z € A° : dist(z, A) < en}) +vp ({z € A : dist(z, A°) < En})],

where 10 + vl = v,.

Let T}, : £2 — £2 be optimal transport map such that (7},)sp = v,, and assume
Vp = (Tn)zpi-

Theorem

Assume that

3
1

(logn)

1
n2

1
d
(@) i
n

Then almost surely it holds P, L Per(-; 1) in the TL'-topology (Garcia Trillos and

ClonnZa: IN1E) b o cnonnn b vennnet b~
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Compactness g CAIDAS

Theorem (LB and Stinson 2022)

Under the previous assumption, assume that e — 0 and

lim inf Per. (A¢; 1) < oo.

e—0

Then (Ac)e>o is precompact in L*(£2).
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Theorem (LB and Stinson 2022)

Under the previous assumption, assume that e — 0 and

hrgrl)%lf Perc (Ac; p) < 0.

Then (Ac)e>o is precompact in L*(£2).

Proof idea.
Define

us(z) = <1 - M) VO,  ve(z) = dist(z, 4%

> (>

v
- = = ==y’
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Compactness ’*‘ CAIDAS

Theorem (LB and Stinson 2022)

Under the previous assumption, assume that e — 0 and

lim inf Per. (A¢; 1) < oo.
e—0

Then (Ac)e>o is precompact in L*(£2).

Proof idea.
Define
i A i A°
ue() = <1 _ dist(z, 4) )) VO,  w(e) = I@ATD
€ 3
and utilize
Per. (Ag; / | Due| po der/ |Dve| p1 dx
together with BV compactness. O

v
™ = = ==y
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Proof Idea for liminf

Use slicing of BV functions to reduce the argument to one dimension, and in fact
to the trivial situation:
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Proof Idea for liminf

Use slicing of BV functions to reduce the argument to one dimension, and in fact
to the trivial situation:

$ So

B(v; p) = min {pg + oY, py "+ p1",pg " + P}
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Proof Idea for limsup

We let J, := J,, UJ,, denote the set where the densities jump.
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© Using a diagonal argument and smooth SBV approximation De Philippis,
Fusco, and Pratelli 2017, we can assume that A has piecewise smooth
boundary.
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Proof Idea for limsup

We let J, := J,, UJ,, denote the set where the densities jump.

© Using a diagonal argument and smooth SBV approximation De Philippis,
Fusco, and Pratelli 2017, we can assume that A has piecewise smooth
boundary.

@ For constructing the recovery sequence we modify A locally, depending on
the value of 3. For instance, in the case 5 = p§ + p¥:

J A

7\.—.—_
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Curvature Regularization

For smooth sets and densities, as € — 0 one has that
Per. (i) - Per(Ais) i= [ (oo + pr) dH!
0A

which is independent of the labels.
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Curvature Regularization

For smooth sets and densities, as € — 0 one has that

Per. (i) - Per(Ais) i= [ (oo + pr) dH!
a4
which is independent of the labels.

A more careful analysis reveals a weighted curvature balance term

pdHIL + 5/

0A

Per.(4; p) = /

1
—div ((p1 — po)v) AR+ O(e?).
oA 2
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Curvature Regularization

For smooth sets and densities, as € — 0 one has that

Per. (i) - Per(Ais) i= [ (oo + pr) dH!
dA
which is independent of the labels.

A more careful analysis reveals a weighted curvature balance term

pdHIL + 5/

0A

Per.(4; p) = /

1
—div ((p1 — po)v) AR+ O(e?).
oA 2

’ Nonlocal regularization induces higher-order local regularization‘
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Curvature Regularization

For smooth sets and densities, as € — 0 one has that

Per. (i) - Per(Ais) i= [ (oo + pr) dH!
dA
which is independent of the labels.

A more careful analysis reveals a weighted curvature balance term

pdHIL + 5/

0A

Per.(4; p) = /

1
—div ((p1 — po)v) AR+ O(e?).
oA 2

’ Nonlocal regularization induces higher-order local regularization‘

Future: show this using Gamma-convergence of 1 (Per.(A; 1) — Per(4; ).
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Morphology

Definition
For a set A C X we define

0 A :={zx e A° : dist(z,A) < e},

0 A° :={zx e A : dist(z, A°) < e},
@ op_(A) := (A™°)° the opening of A,
@ cl.(A) := (A%)~° the closing of A.

Definition

A C X is called e-inner / outer regular if for all z € A there exists y € X with
B.(z) C A/ A°.

Ex: op.(A) is inner and cl.(A) outer regular.
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Extremal Solutions and Regularity ‘e CAIDAS

Theorem (LB, Garcia Trillos, and Murray 2023)
Q Let A € X be a minimizer of

A0 By [I1a(2) — yl] + e Pere(A; p).

Then every set B C B(X) with op.(A) C B C cl.(A) is a minimizer.
@ The problem admits minimal and maximal solutions (w.r.t. set inclusion).
@ If X =R? the problem admits a C**/3-solution.

Proof ingredients: morphological operations, regularized distance function.
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