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Supervised Learning

Supervised Learning
Given: data measure µ ∈ M(X × Y), where X and Y are input/output spaces.
Goal: hypothesis u : X → Y in a class C such that u(x) ≈ y on for µ-a.e. (x, y).

Risk minimization with loss function ℓ(·, ·):

inf
u∈C

E(x,y)∼µ [ℓ(u(x), y)]
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Adversarial Attacks on Neural Networks
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Adversarial Attacks on Neural Networks

Taken from Finlayson et al. 2019

Adversarial attack1 with budget ε > 0:

sup
x̃∈Bε(x)

ℓ(u(x̃), y).

1Szegedy et al. 2013.
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Adversarial Attacks on Neural Networks

Unveiling unlearned knowledge:

Figures courtesy of Leo Schwinn.
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Robust decision boundaries...
...are not necessarily straight

Training data
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Robust decision boundaries...
...are not necessarily straight

Non-robust linear classifier
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Robust decision boundaries...
...are not necessarily straight

Robust classifier (cf. SVMs)
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From Training to Adversarial Training

Risk minimization w.r.t. data (x, y) ∼ µ over set of classifiers C:

inf
u∈C

E(x,y)∼µ [ℓ(u(x), y)] .

Adversarial training1 as robust optimization problem:

inf
u∈C

E(x,y)∼µ

[
sup

x̃∈Bε(x)

ℓ(u(x̃), y)

]
. (AT)

For closed balls Bε(x) = {x′ ∈ X : d(x, x′) ≤ ε}, we have the DRO-formulation:

(AT) = inf
u∈C

sup
W∞(µ̃,µ)≤ε

E(x,y)∼µ̃ [ℓ(u(x), y)] .

1Madry et al. 2017.
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Binary Classification

We consider the following setting:

Binary labels Y = {0, 1};
Agnostic hypotheses C = {1A : A ∈ A} for admissible sets A;
0-1-loss ℓ(u, y) = |u− y|;
Conditional distributions ρi(A) := µ(A× {i}) for i ∈ {0, 1} and A ∈ A.
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Variational Perimeter Regularization

LB, García Trillos, and Murray 2023 express the adversarial risk as

+ε Perε(A;µ)

with a nonlocal and data-driven perimeter:

Perε(A;µ) :=
1

ε

[
ρ0
(
{x ∈ Ac : dist(x,A) < ε}

)
+ ρ1

(
{x ∈ A : dist(x,Ac) < ε}

)]
.

Ac ≜ class 0
A ≜ class 1
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Perimeter and Total Variation

Perε(A;µ) :=
1

ε

[
ρ0
(
{x ∈ Ac : dist(x,A) < ε}

)
+ ρ1

(
{x ∈ A : dist(x,Ac) < ε}

)]

Define an associated total variation

TVε(u;µ) :=

∫
R
Perε({u ≥ t};µ) dt.

TVε(u;µ) =

∫
X

supBε(x)
u− u(x)

ε
dρ0(x) +

∫
X

u(x)− infBε(x) u

ε
dρ1(x)
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TV Regularization for Soft Classifiers

For the hypothesis class C = {u : X → [0, 1]} (which includes neural networks!)
we have analogously:

E(x,y)∼µ

[
sup

x̃∈Bε(x)

|u(x̃)− y|

]
= E(x,y)∼µ [|u(x)− y|] + ε TVε(u;µ).

Take-home 1: Adversarial training regularizes the nonlocal perimeter of hard
classifiers and the nonlocal total variation of soft classifiers.

Related results: TRADES method (Zhang et al. 2019), input gradient regularization
(Finlay and Oberman 2021)
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Implications

1 TVε-problem as convex relaxation of Perε-problem ⇝ existence of
measurable solutions

2 Primal-dual algorithms (Chambolle and Pock 2011) become applicable:

inf
u

L(u) + εTVε(u) = inf
u

sup
p∈P

L(u) + ε ⟨divε p, u⟩

with nonlocal divergence divε (with PhD student Lucas Schmitt).
3 Sets up asymptotic study as ε → 0 in the flavor of variational regularization

methods.
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The limit ε → 0 is interesting.

Figure: Adversarial sticker. ε too large?
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Asymptotics of the Perimeter

Let X = Ω ⊂ Rd and consider

Perε(A;µ) =
1

ε

[
ρ0
(
{x ∈ Ac : ess dist(x,A) < ε}

)
+ ρ1

(
{x ∈ A : ess dist(x,Ac) < ε}

)]

∂A

For ε → 0 and continuous ρ0, ρ1 the Γ -limit is (LB and Stinson 2022):

Per(A;µ) :=

∫
∂⋆A∩Ω

(ρ0 + ρ1) dHd−1.
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Γ -Convergence

A sequence of functionals Fn is said to Γ -converge to F as n → ∞ if

(liminf-inequality): For all sequences un → u it holds

F (u) ≤ lim inf
n→∞

Fn(un).

(limsup-inequality): For all u there exists a sequence un → u such that

lim sup
n→∞

Fn(un) ≤ F (u).

=⇒ Any accumulation point of minimizers of Fn is a minimizer of F .
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Γ -Convergence of the Nonlocal Perimeter

Theorem (LB and Stinson 2022)

Let Ω ⊂ Rd be a bounded Lipschitz domain and let ρ0, ρ1 ∈ BV (Ω) ∩ L∞(Ω) with
ess infΩ (ρ0 + ρ1) > 0. Then Perε(·;µ)

Γ→ Per(·;µ) as ε → 0 in L1(Ω), where

Per(A;µ) :=


∫
∂∗A∩Ω

β

(
D1A
|D1A|

; ρ

)
dHd−1, if 1A ∈ BV (Ω),

∞, else,

and the function β(·; ρ) : Sd−1 → R is given by

β(ν; ρ) := min
{
ρν0 + ρν1 , ρ

−ν
0 + ρ−ν

1 , ρ−ν
0 + ρν1

}
.

Theorem (LB and Stinson 2022)

Under the previous assumption, assume that ε → 0 and

lim inf
ε→0

Perε(Aε;µ) < ∞.

Then (Aε)ε>0 is precompact in L1(Ω).
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Γ -Convergence of Total Variation

Define a total variation through the coarea formula:

TVε(u;µ) :=

∫
R
Perε({u ≥ t};µ) dt

=

∫
Ω

ess supBε(x) u− u(x)

ε
ρ0 dx+

∫
Ω

u(x)− ess infBε(x) u

ε
ρ1 dx

.

Theorem

Under the previous conditions TVε(·;µ)
Γ→ TV(·;µ), where

TV(u;µ) :=


∫
Ω

β

(
Du

|Du| ; ρ
)

d |Du| , if u ∈ BV (Ω),

∞, else,
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Asymptotics of AT

Q: What happens to adversarial training as ε → 0?

inf
A∈B(Ω)

E(x,y)∼µ [ℓ(1A(x), y)] + ε Perε(A;µ)

Problems: Influence of perimeter vanishes. Γ -convergence is not additive.

Consider instead

inf
A∈B(Ω)

E(x,y)∼µ [ℓ(1A(x), y)]− infB∈B(Ω) E(x,y)∼µ [ℓ(1B(x), y)]

ε
+ Perε(A;µ).

Formal limit as ε → 0: Minimization of

J(A) :=

{
Per(A;µ) if A ∈ argminB∈B(Ω) E(x,y)∼µ [ℓ(1B(x), y)] ,

+∞ else.
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Asymptotics of Adversarial Training

Theorem (LB and Stinson 2022)

Under a smoothness condition, solutions of adversarial training accumulate as ε → 0 at a
minimizer of

min

{
Per(A;µ) : A ∈ arg min

B∈B(Ω)
E(x,y)∼µ [|1B(x)− y|]

}
.

Take-home 2: Adversarial training picks the most robust Bayes classifier as ε → 0.

ε = 0

ε > 0ε → 0
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Relation to mean curvature flow

For k ∈ N, consider the iterative scheme

Ak ∈ arg min
A⊂Rd

∫
Ω

∣∣1A(x)− 1Ak−1
(x)

∣∣ dist(x, ∂Ak−1)
p dρ(x) + εPerε(A),

starting at a Bayes classifier A0.
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∣∣1A(x)− 1Ak−1
(x)

∣∣ dist(x, ∂Ak−1)
p dρ(x) + εPerε(A),

starting at a Bayes classifier A0.
For p = 0 this is iterative adversarial training and stagnates for 0 < ε ≪ 1
(exact penalization).
For p = 1 this is an Almgren–Taylor–Wang-type scheme for mean curvature
flow.
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Theorem ((LB, Laux, and Stinson 2024))

One can select unique minimizers of this scheme with p = 1 which, for ε → 0, converge
to a solution of weighted mean curvature flow with normal velocity:

V = mean curvature∂A −∇ log ρ · ν∂A.
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Probabilistic Robustness

Idea (Robey et al. 2022): Don’t penalize all attacks but only likely attacks.

Adversarial Non-Robustness
x is called non-robust if

dist(x,wrong class) < ε

or “equivalently”

Px̃∼Unif(Bε(x)) [x̃ ∈ wrong class] > 0.

Probabilistic Non-Robustness
x is called non-robust if

Ψ (Px̃∼px [x̃ ∈ wrong class]) > 0

for a family of distributions {px}x∈X
and a function Ψ : [0, 1] → [0, 1].
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Probabilistic Perimeters

Robey et al. 2022 do not penalize certain missclassified points!

LB, García Trillos,
et al. 2023 define a probabilistic perimeter as

PerΨ (A) :=

∫
Ac

Ψ (Px̃∼px [x̃ ∈ A]) dρ0(x) +

∫
A

Ψ (Px̃∼px [x̃ ∈ Ac]) dρ1(x)

and consider the problem

inf
A∈A

E(x,y)∼µ [|1A(x)− y|] + PerΨ (A). (PRL)

Ex.: px := Unif(Bε(x)) and Ψ(t) := 1t>0 gives adversarial model.
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The CVaR Relaxation

Robey et al. 2022 suggest Ψ(t) := 1t>p for p ∈ [0, 1] which is non-feasible.

Choosing the concave hull Ψ(t) = min
(
t/p, 1

)
instead gives

(PRL) = inf
A∈A

E(x,y)∼µ

[
max

{
|1A(x)− y| ,CVaRp

(
|1A(x)− y| ; px

)}]
,

where CVaRp is the conditional value at risk p (Rockafellar, Uryasev, et al. 2000):

CVaRp(f ; p) := inf
α∈R

α+
Ex∼p [ReLU(f(x)− α)]

p
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Properties

We have the following properties:
Existence and relaxation if Ψ is non-decreasing and concave.

For p → 0 the CVaR models converge to adversarial training.
If the distributions px localize to δx, there is convergence to a local perimeter.
Empirically, PRL cannot ensure true adversarial robustness.

Take-home 3: Adversarial training is embedded in a family of probabilistic prob-
lems, involving the conditional value at risk.
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Conclusions and Outlook

What we have seen today:

Take-home 1: Adversarial training regularizes the nonlocal perimeter of hard
classifiers and the nonlocal total variation of soft classifiers.

Take-home 2: Adversarial training picks the most robust Bayes classifier as ε → 0.

Take-home 3: Adversarial training is embedded in a family of probabilistic prob-
lems, involving the conditional value at risk.

What’s left:

Tackling the accuracy-robustness trade-off.
Application of non-smooth optimization like PDHG.
Relations between model complexity and robustness.

⇝ PhD projects of Yannick Lunk and Lucas Schmitt.
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Thank You

Taken from https://www.freecodecamp.org/news/
chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d/
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Finite Data Discretizations

In reality data is given in terms of of a sample {xi}Ni=1
i.i.d.∼ ρ with associated

empirical measure νn := 1
N

∑N
i=1 δxi

.

Define discrete perimeter

Pn(A) := 1
εn

[
ν0
n ({x ∈ Ac : dist(x,A) < εn}) + ν1

n ({x ∈ A : dist(x,Ac) < εn})
]
,

where ν0n + ν1n = νn.

Let Tn : Ω → Ω be optimal transport map such that (Tn)♯ρ = νn and assume
νin = (Tn)♯ρi.

Theorem
Assume that

1 ≫ εn ≫


(logn)

3
4

n
1
2

, d = 2,(
logn

n

) 1
d

, d > 2.

Then almost surely it holds Pn
Γ→ Per(·;µ) in the TL1-topology (García Trillos and

Slepčev 2016) and a compactness property holds.
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Compactness

Theorem (LB and Stinson 2022)

Under the previous assumption, assume that ε → 0 and

lim inf
ε→0

Perε(Aε;µ) < ∞.

Then (Aε)ε>0 is precompact in L1(Ω).

Proof idea.
Define

uε(x) :=

(
1− dist(x,A)

ε

)
∨ 0, vε(x) :=

dist(x,Ac)

ε
∧ 1

and utilize

Perε(Aε;µ) ≥
∫
Ω

|Duε| ρ0 dx+

∫
Ω

|Dvε| ρ1 dx

together with BV compactness.
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Proof Idea for liminf

Use slicing of BV functions to reduce the argument to one dimension, and in fact
to the trivial situation:

- 90

p
C

A b !
- I

Per(A,u) =min30 +1, 10,1+13
=1

β(ν; ρ) = min
{
ρν0 + ρν1 , ρ

−ν
0 + ρ−ν

1 , ρ−ν
0 + ρν1

}
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Proof Idea for limsup

We let Jρ := Jρ0 ∪ Jρ1 denote the set where the densities jump.

1 Using a diagonal argument and smooth SBV approximation De Philippis,
Fusco, and Pratelli 2017, we can assume that A has piecewise smooth
boundary.

2 For constructing the recovery sequence we modify A locally, depending on
the value of β. For instance, in the case β = ρν0 + ρν1 :

*O
⑥As
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Curvature Regularization

For smooth sets and densities, as ε → 0 one has that

Perε(A;µ) → Per(A;µ) :=

∫
∂A

(ρ0 + ρ1) dHd−1

which is independent of the labels.

A more careful analysis reveals a weighted curvature balance term

Perε(A;µ) =

∫
∂A

ρ dHd−1 + ε

∫
∂A

1

2
div ((ρ1 − ρ0)ν) dHd−1 +O(ε2).

Nonlocal regularization induces higher-order local regularization

Future: show this using Gamma-convergence of 1
ε (Perε(A;µ)− Per(A;µ)).
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Morphology

Definition
For a set A ⊂ X we define

Aε := {x ∈ Ac : dist(x,A) < ε},
A−ε := {x ∈ A : dist(x,Ac) < ε},
opε(A) := (A−ε)ε the opening of A,

clε(A) := (Aε)−ε the closing of A.

Definition
A ⊂ X is called ε-inner / outer regular if for all x ∈ ∂A there exists y ∈ X with
Bε(x) ⊂ A / Ac.

Ex: opε(A) is inner and clε(A) outer regular.
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Extremal Solutions and Regularity

Theorem (LB, García Trillos, and Murray 2023)
1 Let A ∈ X be a minimizer of

min
A∈B(X )

E(x,y)∼µ [|1A(x)− y|] + εPerε(A;µ).

Then every set B ⊂ B(X ) with opε(A) ⊂ B ⊂ clε(A) is a minimizer.
2 The problem admits minimal and maximal solutions (w.r.t. set inclusion).
3 If X = Rd the problem admits a C1,1/3-solution.

Proof ingredients: morphological operations, regularized distance function.
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